Explanation:
The functions are given below as
[tex]\begin{gathered} g(x)=2x^2 \\ h(x)=x-3 \end{gathered}[/tex]Step 1:
Find (h-g)(x)
To do this, we will use the formula below
[tex]\begin{gathered} (h-g)(x)=h(x)-g(x) \\ (h-g)(x)=x-3-2x^2 \\ (h-g)(x)=-2x^2+x-3 \end{gathered}[/tex]Hence,
The final answer is
[tex]\Rightarrow(h-g)(x)=-2x^2+x-3[/tex]Part B:
Find (h.g)(x)
To do this, we will use the formula below
[tex]\begin{gathered} (h.g)(x)=h(x)\times g(x) \\ (h.g)(x)=(x-3)(2x^2) \\ (h.g)(x)=2x^3-6x^2 \end{gathered}[/tex]Hence,
The final answer is
[tex]\Rightarrow(h.g)(x)=2x^3-6x^2[/tex]Part C:
Find (h+g)(-1)
[tex]\begin{gathered} (h+g)(x)=h(x)+g(x) \\ (h+g)(x)=2x^2+x-3 \\ (h+g)(-1)=2(-1)^2+(-1)-3 \\ (h+g)(-1)=2-1-3 \\ (h+g)(-1)=-2 \end{gathered}[/tex]Hence,
The final answer is
[tex]\Rightarrow(h+g)(-1)=-2[/tex]