ANSWER
x = 2 ± 4i
EXPLANATION
We can find the solutions of the equation,
[tex]x^2-4x+20=0[/tex]Using the quadratic formula,
[tex]\begin{gathered} ax^2+bx+c=0 \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}[/tex]In this equation, a = 1, b = -4 and c = 20,
[tex]x=\frac{-(-4)\pm\sqrt[]{(-4)^2-4\cdot1\cdot20}}{2\cdot1}=\frac{4\pm\sqrt[]{16-80}}{2}=\frac{4\pm\sqrt[]{-64}}{2}[/tex]Since the value under the radical is negative, there are two complex solutions. Replace the negative sign with i² and solve,
[tex]x=\frac{4\pm\sqrt[]{i^2\cdot64}}{2}=\frac{4\pm8i}{2}=2\pm4i[/tex]Hence, the complex solutions are 2 ± 4i