ANSWER
[tex]\frac{240}{289}[/tex]EXPLANATION
We want to find the value of the expression using the given figure:
[tex]\sin (2\theta)[/tex]To do this, let us rewrite the expression in terms of its trigonometric identity:
[tex]\sin (2\theta)=2\sin \theta\cos \theta[/tex]To solve this we can apply trigonometric ratios SOHCAHTOA for right triangles to find the values of sine and cosine:
[tex]\begin{gathered} \sin \theta=\frac{\text{opposite}}{\text{hypotenuse}} \\ \cos \theta=\frac{\text{adjacent}}{\text{hypotenuse}} \end{gathered}[/tex]For the given triangle, we have that:
[tex]\begin{gathered} \sin \theta=\frac{8}{17} \\ \cos \theta=\frac{15}{17} \end{gathered}[/tex]Therefore, the value of the expression is:
[tex]\begin{gathered} \sin 2\theta=2\cdot\frac{8}{17}\cdot\frac{15}{17} \\ \sin 2\theta=\frac{240}{289} \end{gathered}[/tex]That is the answer.