To solve the exercise, we distribute the denominator of the fraction, and then we simplify:
[tex]\begin{gathered} \frac{2-6i}{3}=\frac{2}{3}-\frac{6i}{3} \\ \text{ Simplify} \\ \frac{2-6i}{3}=\frac{2}{3}-\frac{2\cdot3i}{3} \\ \frac{2-6i}{3}=\frac{2}{3}-2i \end{gathered}[/tex]Therefore, the given complex number in its standard form is:
[tex]$\boldsymbol{\frac{2}{3}-2i}$[/tex]