To answer this question, we need to use the inverse function of sin, that is, arcsin or sin^-1 to find the value of the angle for which sin(theta) = 4/9. Then, we have:
[tex]\sin (\theta)=\frac{4}{9}\Rightarrow\arcsin (\sin (\theta))=\arcsin (\frac{4}{9})[/tex]Then, we have:
[tex]\theta=\arcsin (\frac{4}{9})\Rightarrow\theta=0.460553991681[/tex]This angle is in radians. Now, we need to find the value for sin (pi - theta) as follows:
[tex]\sin (\pi-0.460553991681)=0.44444444444\ldots[/tex]Now, we know this periodical decimal expression is equal to:
[tex]undefined[/tex]