Respuesta :

Explanation

The distributive property for the multiplication states that:

[tex]a\cdot(b+c)=a\cdot b+a\cdot c.[/tex]

(1) Choosing:

• a = (x + 3),

,

• b = 4x²,

,

• c = 5.

We have:

[tex](x+3)\cdot(4x^2+5)=a\cdot(b+c).[/tex]

(2) Applying the distributive property for the multiplication, we have:

[tex](x+3)\cdot(4x^2+5)=a\cdot(b+c)=a\cdot b+a\cdot c.[/tex]

(3) Replacing a = (x + 3), b = 4x² and c = 5, we get:

[tex](x+3)\cdot(4x^2+5)=a\cdot(b+c)=a\cdot b+a\cdot c=(x+3)\cdot(4x^2)+(x+3)\cdot(5).[/tex]Answer

(A)

[tex](x+3)\cdot(4x^2)+(x+3)\cdot(5)[/tex]