Given:
The two triangles ABC and A'B'C' .
To show these two triangles are similar,
[tex]\begin{gathered} A)\text{ }\angle A\cong\angle A^{\prime},\text{ AC}\cong A^{\prime}C^{\prime},\text{ BC}\cong B^{\prime}C^{\prime} \\ \text{both triangles are not congruent with these statement.} \\ B)\text{ }\angle A\cong\angle A^{\prime},\text{ }\angle B\cong\angle B^{\prime},\text{ }\angle C\cong\angle C^{\prime} \\ \text{Not conguent } \\ C)\text{ AB}\cong A^{\prime}B,\text{ BC}\cong B^{\prime}C^{\prime},\text{ }\angle A\cong\angle A^{\prime} \\ \text{Not congruent } \\ D)\text{ AB}\cong A^{\prime}B^{\prime},\text{ }\angle A\cong\angle A^{\prime},\text{ }\angle C\cong\angle C^{\prime} \\ \text{both triangles are congruent using AAS postulate} \end{gathered}[/tex]Answer: Option D ) is correct.