Let f be a decreasing function such that f(0) = 4 and f'(0)= 1 / 3. Which of the following is true about its inverse h? h'(0)= 1/3h ′(4) = 3h ′(4) = 0h'(1/3)= 4

Respuesta :

Given:

[tex]f(0)=4_{}[/tex][tex]f^{\prime}(0)=\frac{1}{3}[/tex]

We get the point (0,4) from f(0)=4.

we get the slope m=1/3 from f'(0)=1/3.

The point-slope formula is

[tex]y-y_1=m(x-x_1)[/tex][tex]\text{ Substitute }y_1=4,x_1=0\text{ and m=}\frac{1}{3},\text{ we get}[/tex]

[tex]y-4=\frac{1}{3}(x-0)[/tex]

[tex]y-4=\frac{1}{3}x[/tex][tex]\text{Let y=f(x) and substitute x=f}^{-1}(y)[/tex]

[tex]y-4=\frac{1}{3}f^{-1}(y)[/tex]

[tex]3(y-4)=f^{-1}(y)[/tex]

Replace y by x, we get

[tex]f^{-1}(x)=3(x-4)[/tex][tex]Let\text{ }f^{-1}(x)=h(x)[/tex][tex]h(x)=3(x-4)[/tex]

Differentiate with respect to x, we get

[tex]h^{\prime}(x)=3[/tex]

Hence the answer is

[tex]h^{\prime}(4)=3[/tex]