Respuesta :

The vector will be represent (not accurately) like the diagram below:

Now, from the expression

[tex]\theta=\tan ^{-1}(\frac{v_x}{v_y})[/tex]

we get the pink angle, but we need the green angle. To get the correct one we calculate the pink one and then we find its supplementary angle; let's do that:

[tex]\begin{gathered} \theta=\tan ^{-1}(\frac{11.1}{43}) \\ \theta=14.47 \end{gathered}[/tex]

Now, the green angle will be:

[tex]180-14.47=165.53[/tex]

Therefore the direction of the vector is 165.53°

Ver imagen KenjiB331172