Respuesta :
Given,
The radius of the cylinder and the hemisphere, r=3 inches
The height of the cylinder, h=10 inches.
The volume of the whole figure is the sum of the volume of the cylinder and the volume of the hemisphere.
Hemisphere is the half of a sphere. Thus the volume of a hemisphere is equal to half of the volume of the sphere with the same radius as the hemisphere.
The volume of the given hemisphere is,
[tex]V_h=\frac{2}{3}\pi r^3[/tex]On substituting the known values,
[tex]\begin{gathered} V_h=\frac{2}{3}\pi\times3^3 \\ =56.55\text{ cubic inches} \end{gathered}[/tex]The volume of the cylinder is given by,
[tex]V_c=\pi r^2h[/tex]On substituting the known values,
[tex]\begin{gathered} V_c=\pi\times3^2\times10 \\ =282.74\text{ cubic inches} \end{gathered}[/tex]Thus the total volume of the given figure is,
[tex]\begin{gathered} V=V_h+V_c \\ =56.55+282.74 \\ =339.29\text{ cubic inches} \end{gathered}[/tex]Thus the volume of the given figure is 339.29 cubic inches