Given:
A line is passing through the point (1, -4) and parallel to the line
[tex]-13x-3y=-66[/tex]To find:
The equation of the line.
Explanation:
Let us write the given equation in the slope-intercept form,
[tex]\begin{gathered} -3y=13x-66 \\ y=-\frac{13}{3}x+22 \end{gathered}[/tex]So, the slope of the line is,
[tex]m=-\frac{13}{3}[/tex]Since the lines are parallel. So, the slopes are equal.
Using the point and slope formula,
[tex]\begin{gathered} (y-y_1)=m(x-x_1) \\ (y-(-4))=-\frac{13}{3}(x-1) \\ y+4=-\frac{13}{3}x+\frac{13}{3} \\ y=-\frac{13}{3}x+\frac{13}{3}-4 \\ y=-\frac{13}{3}x+\frac{1}{3} \\ y=\frac{-13x+1}{3} \\ 3y=-13x+1 \\ 13x+3y-1=0 \end{gathered}[/tex]Therefore, the equation of the line is,
[tex]13x+3y-1=0[/tex]Final answer:
The equation of the line is,
[tex]13x+3y-1=0[/tex]