We want to solve the following equation
[tex]x^2-12x+36=80[/tex]we begin by subtracting 80 on both sides, so we get
[tex]x^2-12x+36-80=x^2\text{ -12x -44}=0[/tex]So we have the equivalent problem of solving the equation
[tex]x^2\text{ -12x-44=0}[/tex]Recall that having an equation of the form
[tex]ax^2+bx+c=0^{}[/tex]the solutions are given by the equation
[tex]x=\frac{\text{ -b }\pm\sqrt[]{b^2\text{ -4ac}}}{2a}[/tex]In our case we have a=1, b=-12 and c= -44 so the solutions are
[tex]x=\frac{\text{ -(-12)}\pm\sqrt[]{(-12)^2\text{ -4(1)( -44)}}}{2(1)}=\frac{12\pm\sqrt[]{320}}{2}=\frac{12\pm8\sqrt[]{5}}{2}=6\pm4\sqrt[\square]{5}[/tex]so the solutions to the original problem are
[tex]x=6+4\sqrt[]{5}[/tex]and
[tex]x=6\text{ -4}\sqrt[]{5}[/tex]