Respuesta :

Question:

Solution:

According to the diagram, we get the following equations:

Equation 1:

[tex]m\angle1\text{ + m}\angle2=180^{\circ}[/tex]

Equation 2:

[tex]m\angle4\text{ + m}\angle3=180^{\circ}[/tex]

the angle 3 is 112 degrees, so replacing this value into the previous equation, we get:

[tex]m\angle4+112^{\circ}=180^{\circ}[/tex]

solving for angle 4, we get:

[tex]m\angle4\text{ }=180^{\circ}-112^{\circ}=68^{\circ}[/tex]

now, note that

Equation 3:

[tex]m\angle4\text{ + m}\angle1=180^{\circ}[/tex]

but the angle 4 is 68 degrees, so replacing this into the above equation, we get:

[tex]68^{\circ}\text{ + m}\angle1=180^{\circ}[/tex]

solving for angle 1, we get :

[tex]\text{ m}\angle1=180^{\circ}-68^{\circ}=112^{\circ}[/tex]

Finally, from equation 1, we get:

[tex]112^{\circ}\text{ + m}\angle2=180^{\circ}[/tex]

then,

[tex]\text{ m}\angle2=180^{\circ}-112^{\circ}=68^{\circ}[/tex]

we can conclude that the correct answer is:

[tex]\text{ m}\angle1=112^{\circ}[/tex]

[tex]\text{ m}\angle2=68^{\circ}[/tex]

[tex]\text{ m}\angle3=112^{\circ}[/tex]

[tex]m\angle4\text{ =}68^{\circ}[/tex]
Ver imagen SyrinityM72917