Question:
Solution:
According to the diagram, we get the following equations:
Equation 1:
[tex]m\angle1\text{ + m}\angle2=180^{\circ}[/tex]Equation 2:
[tex]m\angle4\text{ + m}\angle3=180^{\circ}[/tex]the angle 3 is 112 degrees, so replacing this value into the previous equation, we get:
[tex]m\angle4+112^{\circ}=180^{\circ}[/tex]solving for angle 4, we get:
[tex]m\angle4\text{ }=180^{\circ}-112^{\circ}=68^{\circ}[/tex]now, note that
Equation 3:
[tex]m\angle4\text{ + m}\angle1=180^{\circ}[/tex]but the angle 4 is 68 degrees, so replacing this into the above equation, we get:
[tex]68^{\circ}\text{ + m}\angle1=180^{\circ}[/tex]solving for angle 1, we get :
[tex]\text{ m}\angle1=180^{\circ}-68^{\circ}=112^{\circ}[/tex]Finally, from equation 1, we get:
[tex]112^{\circ}\text{ + m}\angle2=180^{\circ}[/tex]then,
[tex]\text{ m}\angle2=180^{\circ}-112^{\circ}=68^{\circ}[/tex]we can conclude that the correct answer is:
[tex]\text{ m}\angle1=112^{\circ}[/tex][tex]\text{ m}\angle2=68^{\circ}[/tex][tex]\text{ m}\angle3=112^{\circ}[/tex][tex]m\angle4\text{ =}68^{\circ}[/tex]