The vertices of ABC are A(2,-5), B(-3, - 1), and C(3,2). For the translation below, give the vertices of AA'B'C'. T * - 1) (ABC) The vertices of AA'B'C' are A'B', and c'| (Simplify your answers. Type ordered pairs.)

The vertices of ABC are A25 B3 1 and C32 For the translation below give the vertices of AABC T 1 ABC The vertices of AABC are AB and c Simplify your answers Typ class=

Respuesta :

In order to calculate the translation of <-4, -1> to the triangle ABC, we just need to add these coordinates to all vertices of the triangle, that is, add -4 to the x-coordinate and -1 to the y-coordinate. So we have that:

[tex]\begin{gathered} A(2,-5)\to A^{\prime}(2-4,-5-1)=A^{\prime}(-2,-6) \\ B(-3,-1)\to B^{\prime}(-3-4,-1-1)=B^{\prime}(-7,-2) \\ C(3,2)\to C^{\prime}(3-4,2-1)=C^{\prime}(-1,1) \end{gathered}[/tex]

So the vertices after the translation are A'(-2, -6), B'(-7, -2) and C'(-1, 1).