Respuesta :
We are given that the position of an object if given by the following equations:
[tex]\begin{gathered} x=-3t^2+2t-4 \\ y=-2t^3+6t^2+1 \end{gathered}[/tex]To determine the velocity we will determine the derivative of each of the functions. For "x" we have:
[tex]x=-3t^2+2t-4[/tex]Finding the derivative with respect to time we get:
[tex]\frac{dx}{dt}=\frac{d}{dt}(-3t^2+2t-4)[/tex]Now we distribute the derivative on the left side:
[tex]\frac{dx}{dt}=\frac{d}{dt}(-3t^2)+\frac{d}{dt}(2t)-\frac{d}{dt}(4)[/tex]For the first derivative we will use the rule:
[tex]\frac{d}{dt}(at^n)=ant^{n-1}[/tex]Applying the rule we get:
[tex]\frac{dx}{dt}=-6t^{}+\frac{d}{dt}(2t)-\frac{d}{dt}(4)[/tex]For the second derivative we use the rule:
[tex]\frac{d}{dt}(at)=a[/tex]Applying the rule we get:
[tex]\frac{dx}{dt}=-6t^{}+2-\frac{d}{dt}(4)[/tex]For the third derivative we use the rule:
[tex]\frac{d}{dt}(a)=0[/tex]Applying the rule we get:
[tex]\frac{dx}{dt}=-6t^{}+2[/tex]Now, since the velocity is the derivative with respect to time of the position and this is and we determine the derivative for the x-position what we have found is the velocity in the x-direction, therefore, we can write:
[tex]v_x=-6t^{}+2[/tex]Now we substitute the value of time, t = 1, we get:
[tex]\begin{gathered} v_x=-6(1)+2 \\ v_x=-6+2 \\ v_x=-4 \end{gathered}[/tex]Now we use derivate the function for "y":
[tex]\frac{dy}{dt}=\frac{d}{dt}(-2t^3+6t^2+1)[/tex]Using the same procedure as before we determine the derivative:
[tex]\frac{dy}{dt}=-6t^2+12t[/tex]This is the velocity in the y-direction:
[tex]v_y=-6t^2+12t[/tex]Now we substitute the value of t = 1:
[tex]\begin{gathered} v_y=-6(1)^2+12(1) \\ v_y=6 \end{gathered}[/tex]Now, the speed is the magnitude of the velocity, the magnitude is given by:
[tex]v=\sqrt[]{v^2_x+v^2_y}[/tex]Substituting the values we get:
[tex]v=\sqrt[]{(-4)^2+6^2}[/tex]Solving the operations:
[tex]v=7.21[/tex]Therefore, the speed is 7.21 m/s.
To determine the acceleration we will determine the derivative of the formulas for velocities:
[tex]v_x=-6t^{}+2[/tex]Now we derivate with respect to time:
[tex]\frac{dv_x}{dt}=a_x=-6[/tex]Now we use the function for the velocity in the y-direction:
[tex]\frac{dv_y}{dt}=a_y=-12t^{}+12[/tex]Now we substitute the value of t = 1:
[tex]\begin{gathered} a_y=-12(1)^{}+12 \\ a_y=0 \end{gathered}[/tex]Since the acceleration in the y-direction is zero, this means that the total acceleration is the acceleration in the x-direction, therefore, the magnitude of the acceleration is:
[tex]a=6[/tex]