Recall that the limit of a function exists if
[tex]\lim_{x\to n^+}f(x)=\lim_{x^\to n^-}f(x).[/tex]Now, from the graph, we get that:
[tex]\begin{gathered} \lim_{x\to0^-}f(x)=0, \\ \lim_{x\to0^+}f(x)=0, \end{gathered}[/tex]therefore:
[tex]\lim_{x\to0}f(x)=0.[/tex]