3) You have the following expression:
[tex]\log _p4096=3[/tex]In order to solve for p, proceed as follow:
- Use the property:
[tex]\log _mn=\frac{\log n}{\log m}[/tex]which applied to the given expression result:
[tex]\frac{\log 4096}{\log p}=3[/tex]- Next, solve for log p and take the complete equation as the exponent of a base 10:
[tex]\begin{gathered} \log p=\frac{1}{3}\log 4096 \\ 10^{\log p}=10^{\frac{1}{3}\log 4096} \end{gathered}[/tex]- By properties of logarithms you obtain:
[tex]\begin{gathered} p=4096^{\frac{1}{3}}=\sqrt[3]{4096^{}} \\ p=16 \end{gathered}[/tex]