Given the function:
[tex]f(x)=x^2-2x-8[/tex]It is a quadratic function where:
a=1
b= -2
c= -8
The x-coordinate of the vertex is given by:
[tex]x=-\frac{b}{2a}[/tex]Substitute a and b:
[tex]x=-\frac{-2}{2(1)}=\frac{2}{2}=1[/tex]Substituting in the original equation to obtain the y-coordinate, we obtain:
[tex]y=(1)^2-2(1)-8=1-2-8=-9[/tex]So, the vertex is (0, -9)
c. For the intercept at x we make y = 0:
[tex]0=x^2-2x-8[/tex]And solve for x by factorization:
[tex]\begin{gathered} (x-4)(x+2)=0 \\ Separate\text{ the solutions} \\ x-4=0 \\ x-4+4=0+4 \\ x=4 \\ and \\ x+2=0 \\ x+2-2=0-2 \\ x=-2 \end{gathered}[/tex]So, the x-intercepts are:
(-2, 0) and (4,0)
Answer: (-2,0), (4,0)
d. For the intercept at y we make x = 0:
[tex]y=(0)^2-2(0)-8=-8[/tex]So the y-intercept is (0, -8)
Answer: (0, -8)
e. Graphing the function: