Answer:
110,270 pounds.
Explanation:
Diameter of the Spherical Tank = 15 ft
• Radius = 15 ÷ 2 = 7.5 ft
For any sphere with radius, r:
[tex]\text{Volume}=\frac{4}{3}\pi r^3[/tex]Therefore, the volume of water that will fill the tank:
[tex]\begin{gathered} V=\frac{4}{3}\times\pi\times7.5^3 \\ =1767.15\; ft^3 \end{gathered}[/tex]If water weighs 62.4 pounds per cubic foot:
[tex]\begin{gathered} \text{Density}=\frac{\text{Weight}}{\text{Volume}} \\ 62.4=\frac{\text{Weight}}{1767.15} \\ \text{Weight}=62.4\times1767.15 \\ \text{Weight}=110,270.16\text{ pounds} \\ \text{Weight=}110,270\text{ pounds} \end{gathered}[/tex]The total weight of the water in a full tank is 110,270 pounds. (correct to the nearest pound).