Respuesta :

Given:

x varies directly with y, and x=6 when y=8

Required:

We need to find the value of x when y =18.

Explanation:

if x varies directly as y the equation of variation is expressed as follows.

[tex]y=kx[/tex]

Substitute x =6 and y =8 in the equation to find teh value of k.

[tex]8=k(6)[/tex]

Divide both sides by 6.

[tex]\frac{8}{6}=\frac{k(6)}{6}[/tex][tex]\frac{4}{3}=k[/tex]

We get k =4/3.

The equation is

[tex]y=\frac{4}{3}x[/tex]

Substitute y =18 in the equation to find the value of x.

[tex]18=\frac{4}{3}x[/tex]

Divide both sides by 3/4.

[tex]18\times\frac{3}{4}=\frac{4}{3}x\times\frac{3}{4}[/tex][tex]13.5=x[/tex]

We get x =13.5

Final answer:

[tex]x=13.5\text{ when y =18.}[/tex]