Respuesta :

Lets take 2 pair of points from the table:

[tex]\begin{gathered} (x_1,y_1)=(0,4) \\ (x_2,y_2)=(2,10) \end{gathered}[/tex]

The equation of line is y = mx + b

Where

m is slope

b is y-intercept

Let's find the slope (m):

[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ m=\frac{10-4}{2-0} \\ m=\frac{6}{2} \\ m=3 \end{gathered}[/tex]

So, the equation becomes:

[tex]y=3x+b[/tex]

Let's plug in the first point (x, y) = (0,4) to find b:

[tex]\begin{gathered} y=3x+b \\ 4=3(0)+b \\ 4=0+b \\ b=4 \end{gathered}[/tex]

Final Equation of the line:

[tex]y=3x+4[/tex]