How many ways can a person toss a coin 14 times so that the number of heads is between 6 and 9 inclusive?
the formula of combination is equal to
[tex]\text{nCr}=\frac{n!}{r!(n-r)!}[/tex]For r between 6 and 9
For r=6
n=14
substitute
[tex]14\text{C6}=\frac{14!}{6!(14-6)!}=\frac{14!}{6!(8)!}=\frac{14\cdot13\cdot12\cdot11\cdot10\cdot9}{6\cdot5\cdot4\cdot3\cdot2\cdot1}[/tex]14C6=3,003
For r=7
n=14
substitute
[tex]14\text{C7}=\frac{14!}{7!(14-7)!}=\frac{14!}{7!(7)!}=\frac{14\cdot13\cdot12\cdot11\cdot10\cdot9\cdot8}{7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1}[/tex]14C7=3,432
For r=8
n=14
substitute
[tex]14\text{C8}=\frac{14!}{8!(14-8)!}=\frac{14!}{8!(6)!}=\frac{14\cdot13\cdot12\cdot11\cdot10\cdot9}{6\cdot5\cdot4\cdot3\cdot2\cdot1}[/tex]14C8=3,003
For r=9
n=14
substitute
[tex]14\text{C9}=\frac{14!}{9!(14-9)!}=\frac{14!}{9!(5)!}=\frac{14\cdot13\cdot12\cdot11\cdot10}{5\cdot4\cdot3\cdot2\cdot1}[/tex]14C9=2,002
adds the combinations
3,003+3,432+3,003+2,002=11,440