Respuesta :

Given:

Line pass through ( 3, 4)

Parallel to the,

[tex]y=-\frac{2}{3}x+1[/tex]

Find-:

The equation of a line.

Explanation-:

The slope of the parallel line is also the same.

[tex]m_1=m_2[/tex]

Where

m is the slope of a parallel line

The general equation of a line is:

[tex]y=mx+c[/tex]

So the equation become is:

[tex]\begin{gathered} y=mx+c \\ \\ y=-\frac{2}{3}x+c \end{gathered}[/tex]

The line pass ( 3,4)

That mean,

[tex](x,y)=(3,4)[/tex][tex]\begin{gathered} y=-\frac{2}{3}x+c \\ \\ (x,y)=(3,4) \\ \\ 4=-\frac{2}{3}(3)+c \\ \\ 4=-2+c \\ \\ c=4+2 \\ \\ c=6 \end{gathered}[/tex]

So the equation of a line is:

[tex]\begin{gathered} y=-\frac{2}{3}x+6 \\ \\ y=\frac{-2x}{3}+\frac{18}{3} \\ \\ y=\frac{-2x+18}{3} \\ \\ 3y=-2x+18 \\ \\ 2x+3y=18 \end{gathered}[/tex]