Answer:
Concept:
We will have to get the formula connecting the diameter and the cost
Step 1:
We will bring put two coordinates below as
[tex]\begin{gathered} (x_1,y_1)\Rightarrow(14,40) \\ (x_2,y_2)\Rightarrow(16,50) \end{gathered}[/tex]To figure out the equation of the line, we will use the formula below
[tex]\frac{y_2-y_1}{x_2-x_1}=\frac{y-y_1}{x-x_1}[/tex]By substituting the values, we will have
[tex]\begin{gathered} \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{x-x_{1}} \\ \frac{50-40}{16-14}=\frac{y-40}{x-14} \\ \frac{10}{2}=\frac{y-40}{x-14} \\ y-40=5(x-14) \\ y-40=5x-70 \\ y=5x-70+40 \\ y=5x-30 \end{gathered}[/tex]Step 2:
To get the cost of a hubcap with a diameter of 20 inches , we will substitute x=20 in the equation below
[tex]\begin{gathered} y=5x-30 \\ y=5(20)-30 \\ y=100-30 \\ y=70 \end{gathered}[/tex]Hence,
The final asnwer is
[tex]\Rightarrow70[/tex]The FIRST OPTION is the right answer