x = 1
Explanation:
[tex]4^{4x-1}=8^{2x}[/tex]Make the base have the same number:
8 = 2³
4 = 2²
The base becomes 2
[tex]2^{2(4x-1)}=2^{3(}^{2x)}[/tex]Then we simplify:
[tex]\begin{gathered} \text{The base cancels out:} \\ 2(4x-1)\text{ = 3(2x)} \\ 8x\text{ - 2 = 6x} \\ \text{collect like terms: } \\ 8x\text{ - 6x = 2} \\ 2x\text{ = 2} \\ x\text{ = 2/2} \\ x\text{ = 1} \end{gathered}[/tex]Therefore, x = 1
check:
[tex]\begin{gathered} 4^{4(1)-1}=8^{2(1)} \\ 4^{4-1}=8^2 \\ 4^3\text{ }=8^2 \\ 4\times4\times4=\text{ 64} \\ 8\times8\text{ = 64} \\ 64\text{ = 64 (x=1 is correct)} \end{gathered}[/tex]