ANSWER:
369
STEP-BY-STEP EXPLANATION:
Given:
Mean (μ) = 3.1
Standard deviation (σ) = 0.8
Margin of error (E) = 0.06
At 85% confidence level the z is:
[tex]\begin{gathered} \alpha=1-\text{ confidence level} \\ \\ \alpha=1-85\%=1-0.85=0.15 \\ \\ \alpha\text{/2}=\frac{0.15}{2}=0.075 \\ \\ \text{ The corresponding value of z according to the table is:} \\ \\ Z_{\alpha\text{/2}}=1.44 \end{gathered}[/tex]We can determine the sample size using the following formula:
[tex]\begin{gathered} n=\:\left(\frac{Z_{\alpha\text{/2}}\cdot\sigma}{E}\right)^2 \\ \\ \text{ We replacing:} \\ \\ n=\left(\frac{1.44\cdot0.8}{0.06}\right)^2 \\ \\ n=368.64\cong369 \end{gathered}[/tex]The size of the sample is 369