The system of equations is
[tex]\begin{gathered} -3x+3y=-3\Rightarrow(1) \\ 2x-y=0\Rightarrow(2) \end{gathered}[/tex]Since all terms in equation 1 can divide by 3, then
Divide each term in equation 1 by 3
[tex]\begin{gathered} \frac{-3x}{3}+\frac{3y}{3}=\frac{-3}{3} \\ -x+y=-1\Rightarrow(3) \end{gathered}[/tex]Add equations (2) and (3) to eliminate y
[tex]\begin{gathered} (2x-x)+(-y+y)=(0-1) \\ x+0=-1 \\ x=-1 \end{gathered}[/tex]Substitute x by -1 in equation (2) to find y
[tex]\begin{gathered} 2(-1)-y=0 \\ -2-y=0 \end{gathered}[/tex]Add y to both sides
[tex]\begin{gathered} -2-y+y=0+y \\ -2+0=y \\ -2=y \\ y=-2 \end{gathered}[/tex]The solution of the given system of equations is (-1, -2)