Answer:
[tex]\begin{gathered} x_1=4+\sqrt[]{11} \\ x_2=4-\sqrt[]{11} \end{gathered}[/tex]Step-by-step explanation:
Solve the following quadratic completing the square:
[tex]x^2-8x+5=0[/tex]Keep x terms on the left and move the constant to the right side:
[tex]x^2-8x=-5[/tex]Then, take half of the x-term and square it.
[tex](-8\cdot\frac{1}{2})^2=16[/tex]Now, add this result to both sides of the equation:
[tex]x^2-8x+16=-5+16[/tex]Rewrite the perfect square on the left.
[tex]\begin{gathered} (x-4)^2=-5+16 \\ (x-4)^2=11 \end{gathered}[/tex]Take the square root of both sides:
[tex]\begin{gathered} \sqrt[]{(x-4)^2}=\pm\sqrt[]{11} \\ x-4=\pm\sqrt[]{11} \\ x=\pm\sqrt[]{11}+4 \end{gathered}[/tex]Hence, the two solutions of the equation are:
[tex]\begin{gathered} x_1=4+\sqrt[]{11} \\ x_2=4-\sqrt[]{11} \end{gathered}[/tex]