Respuesta :

Step 1

Given; What is the equation of the line that passes through (5, 2) and is

perpendicular to y =

10x + 7?

Step 2

The slope of the given line is;

[tex]\begin{gathered} m=10 \\ since,\text{ when we compare y=mx+b} \\ m=10 \end{gathered}[/tex]

Slope of perpendicular lines have the following relationship;

[tex]\begin{gathered} m_1=-\frac{1}{m_2} \\ 10=-\frac{1}{m_2} \\ m_2=-\frac{1}{10} \end{gathered}[/tex]

Therefore the required equation will be in the form of;

[tex]\begin{gathered} y=-\frac{1}{10}x+b \\ y=2 \\ x=5 \end{gathered}[/tex]

Find b, the y-intercept

[tex]\begin{gathered} 2=-\frac{1}{10}(5)+b \\ 2=-\frac{1}{2}+b \\ 4=-1+2b \\ 2b=5 \\ b=\frac{5}{2} \end{gathered}[/tex]

Thus the answer will be; Option B

[tex]\begin{gathered} y=-\frac{1}{10}x+\frac{5}{2} \\ \\ \\ \\ \end{gathered}[/tex]