Answer:
The equation of the circle is;
[tex]\mleft(x-7\mright)^2+\mleft(y+1\mright)^2=16[/tex]Explanation:
Given that the circle has a diameter with endpoints located at (7,3) and (7,-5).
The diameter of the circle is the distance between the two points;
[tex]\begin{gathered} d=\sqrt[]{(7-7)^2+(3--5)^2_{}} \\ d=\sqrt[]{(0)^2+(3+5)^2_{}} \\ d=\sqrt[]{64} \\ d=8 \end{gathered}[/tex]The radius of the circle is;
[tex]\begin{gathered} r=\frac{d}{2}=\frac{8}{2} \\ r=4 \end{gathered}[/tex]The center of the circle is at the midpoint of the line of the diameter.
[tex]\begin{gathered} (h,k)=(\frac{7+7}{2},\frac{3-5}{2}) \\ (h,k)=(\frac{14}{2},\frac{-2}{2}) \\ (h,k)=(7,-1) \end{gathered}[/tex]Applying the equation of a circle;
[tex](x-h)^2+(y-k)^2=r^2[/tex]Substituting the given values;
[tex]\begin{gathered} (x-h)^2+(y-k)^2=r^2 \\ (x-7)^2+(y+1)^2=4^2 \\ (x-7)^2+(y+1)^2=16^{} \end{gathered}[/tex]Therefore, the equation of the circle is;
[tex]\mleft(x-7\mright)^2+\mleft(y+1\mright)^2=16[/tex]