Hello
To solve this question, i will use quadratic formula; however, there are other methods we can use to solve this question.
Step 1
Collect like terms
[tex]\begin{gathered} 2x^2+3x=9x+2 \\ 2x^2+3x-9x-2=0 \\ 2x^2-6x-2=0 \end{gathered}[/tex]A standard quadratic equation can be represented as
[tex]\begin{gathered} ax^2+bx+c=0 \\ a=2,b=-6,c=-2 \end{gathered}[/tex]The quadratic equation is given as
[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]Therefore,
[tex]\begin{gathered} x=\frac{-(-6)\pm\sqrt[]{(-6)^2-4(2)(-2)}}{2\times2} \\ x=\frac{6\pm\sqrt[]{36+16}}{4} \\ x=\frac{6\pm\sqrt[]{52}}{4} \\ x=\frac{6\pm7.2}{4} \\ x=\frac{6+7.2}{4}=3.3 \\ or \\ x=\frac{6-7.2}{4}=-0.3 \end{gathered}[/tex]From the calculations above, the value of x is either 3.3 or -0.3