The function given is,
[tex]f\left(x\right)=\frac{x+6}{\left(x+12\right)^2}[/tex]The graph of the function will be shown below
a) The zeros of a function, also referred to as roots or x-intercepts, occur at x-values where the value of the function is 0 (f(x) = 0).
Hence, from the graph above the zeros of the function is at
[tex]x=-6[/tex]b) The function's domain is
[tex]\:\left(-\infty \:,\:-12\right)\cup \left(-12,\:\infty \:\right)[/tex]c) The function's long-run behaviour is that:
[tex]\mathrm{as}\:x\to \:+\infty \:,\:f\left(x\right)\to \:0[/tex]Hence, the answer is
[tex]0[/tex]