9. Find the equation(s) of the line(s) through (2,-2) if the sum of the intercer 10. Find the angle that line l, makes with line l. (a) hirty 10, 4:3x - 2y=5 (b) 1,: 2x + 3y = 6,1 -11. Find the coordinates of the point. (a) equidistant from (4.-) and the origin; as well as on the line 2 (b) equidistant from (3, 8) and (-2,5) on the y-axis (c) J x + 3y = 7 5.1 - 6 = -28 12. Find the equation of the line passing through the point (4.-1) and

Respuesta :

Let:

[tex]\begin{gathered} x+3y=7_{\text{ }}(1) \\ 5x-6y=-28_{\text{ }}(2) \end{gathered}[/tex]

From (1):

[tex]x=7-3y_{\text{ }}(3)[/tex]

Replace (3) into (2):

[tex]\begin{gathered} 5(7-3y)-6y=-28 \\ 35-15y-6y=-28 \\ 35-21y=-28 \\ -21y=-63 \\ y=\frac{-63}{-21} \\ y=3 \end{gathered}[/tex]

Replace the value of y into (3):

[tex]x=7-3(3)=7-9=-2[/tex]

Therefore:

x = -2

y = 3

or

(x,y) = (-2,3)