The correct answer is Option D
This following are the steps to take:
Step1: Convert the angle from radians to degrees
[tex]\begin{gathered} 1\pi radians=180^o \\ \text{Thus }\frac{\pi}{6}\text{ radians = }\frac{180^o}{6} \\ \text{ }\frac{\pi}{6}\text{ radians =}30^o \end{gathered}[/tex]Step 2: Draw a unit circle (with a radius of 1 unit), and show the line which forms angle 30 degrees with the x -axis
Step 3: Compute the values of the terminal points:
[tex]\begin{gathered} Th\text{e x-coordinate of the terminal point = 1 }\times cos30^0\text{ = }\frac{\sqrt[]{3}}{2} \\ Th\text{e y-coordinate of the terminal point = 1 }\times\sin 30^0\text{ = }\frac{1}{2} \\ \text{Thus the coordinates of ther terminal point = }(x,y)\text{ = (}\frac{\sqrt[]{3}}{2},\text{ }\frac{1}{2}\text{)} \end{gathered}[/tex]Step 4: Compute the values of the tangent of the angle:
[tex]\begin{gathered} \tan 30^0\text{ = }\frac{y}{x}=\frac{\frac{1}{2}}{\frac{\sqrt[]{3}}{2}}=\frac{1}{\sqrt[]{3}}\text{ } \\ \\ \tan 30^o=\frac{1}{\sqrt[]{3}}\text{ }\times\frac{\sqrt[]{3}}{\sqrt[]{3}}\text{ =}\frac{\sqrt[]{3}}{3} \\ \\ \tan 30^{o\text{ }}=\text{ }\frac{\sqrt[]{3}}{3} \end{gathered}[/tex]