Respuesta :

Given:

Given a table.

Required:

To find the equation of the linear function.

Explanation:

From the table

[tex]\begin{gathered} (x1,y1)=(1,6) \\ (x2,y2)=(2,9) \end{gathered}[/tex]

The general form of equation is

[tex]y=mx+b[/tex]

Here the slope is

[tex]\begin{gathered} m=\frac{y2-y1}{x2-x2} \\ \\ =\frac{9-6}{2-1} \\ \\ =\frac{3}{1} \\ \\ =3 \end{gathered}[/tex]

So

[tex]y=3x+b[/tex]

Now we have to find the value of b, by using the point (1,6)

[tex]\begin{gathered} 6=3(1)+b \\ \\ 6-3=b \\ \\ b=3 \end{gathered}[/tex]

Now

[tex]y=3x+3[/tex]

Final Answer:

The linear equation is

[tex]y=3x+3[/tex]