Answer:
The x-intercepts of the function are;
[tex]\begin{gathered} x=-2 \\ \text{and} \\ x=-4 \end{gathered}[/tex]Explanation:
Given the function;
[tex]f(x)=-2(x+3)^2+2[/tex]We want to derive the x-intercepts of the function.
The x-intercept is at f(x)=0;
[tex]\begin{gathered} f(x)=-2(x+3)^2+2=0 \\ -2(x+3)^2+2=0 \\ -2(x^2+6x+9)^{}+2=0 \\ -2x^2-12x-18^{}+2=0 \\ -2x^2-12x-16=0 \\ -x^2-6x-8=0 \\ x^2+6x+8=0 \end{gathered}[/tex]solving for x;
[tex]\begin{gathered} x^2+6x+8=0 \\ x^2+2x+4x+8=0 \\ (x+2)(x+4)=0 \\ x+2=0 \\ x=-2 \\ \text{and} \\ x+4=0 \\ x=-4 \end{gathered}[/tex]Therefore, the x-intercepts of the function are;
[tex]\begin{gathered} x=-2 \\ \text{and} \\ x=-4 \end{gathered}[/tex]Method 2: quadratic root property;
[tex]\begin{gathered} f(x)=-2(x+3)^2+2=0 \\ -2(x+3)^2+2=0 \\ -2(x+3)^2=-2 \\ \text{divide both sides by -2;} \\ (x+3)^2=1 \\ \text{square root both sides;} \\ \sqrt{(x+3)^2}=\sqrt{1} \\ x+3=\pm1 \\ x=-3\pm1 \\ so\text{ the values of x are;} \\ x=-3+1=-2 \\ \text{and} \\ x=-3-1=-4 \end{gathered}[/tex]Therefore, the x-intercepts are;
[tex]\begin{gathered} x=-2 \\ \text{and } \\ x=-4 \end{gathered}[/tex]