EXPLANATION:
Given;
We are given a sector of a circle with the following dimensions;
[tex]\begin{gathered} radius=12 \\ central\text{ }angle=\frac{\pi}{6} \end{gathered}[/tex]Required;
We are required to calculate the area of the sector with the details given.
Step-by-step solution;
To calculate the area of a sector with the central angle given in radians, we will use the following formula;
[tex]Area\text{ }of\text{ }a\text{ }sector=\frac{\theta}{2\pi}\times\pi r^2[/tex]We can now substitute and solve;
[tex]Area=\frac{\frac{\pi}{6}}{2\pi}\times\pi r^2[/tex][tex]Area=(\frac{\pi}{6}\div\frac{2\pi}{1})\times\pi r^2[/tex][tex]Area=(\frac{\pi}{6}\times\frac{1}{2\pi})\times\pi\times12^2[/tex][tex]Area=\frac{1}{12}\times144\times\pi[/tex][tex]Area=12\pi[/tex]ANSWER:
In terms of pi the area of the sector is
[tex]undefined[/tex]