Respuesta :
a)
In order to calculate the required horizontal speed, first let's calculate the falling time, using the free-fall formula:
[tex]d=\frac{gt^2}{2}[/tex]For d = 9 and g = 9.8, we have:
[tex]\begin{gathered} 9=4.9t^2 \\ t^2=\frac{9}{4.9} \\ t=1.355\text{ s} \end{gathered}[/tex]Then, let's use this time in the following formula for horizontal distance, so we can calculate the horizontal speed:
[tex]\begin{gathered} \text{distance}=\text{speed}\cdot\text{time} \\ 3.5=\text{speed}\cdot1.355 \\ \text{speed}=\frac{3.5}{1.355}=2.58\text{ m/s} \end{gathered}[/tex]b)
Let's calculate the vertical velocity after 0.75 seconds, using the formula:
[tex]\begin{gathered} V=V_0+a\cdot t \\ V=0+9.8\cdot0.75 \\ V=7.35\text{ m/s} \end{gathered}[/tex]The magnitude can be calculated using the Pythagorean Theorem with the horizontal and vertical velocities:
[tex]\begin{gathered} V^2=7.35^2+3.3^2 \\ V^2=54.0225+10.89 \\ V^2=64.9125 \\ V=8.06\text{ m/s} \end{gathered}[/tex]And the direction is given by the arc tangent of the vertical velocity divided by the horizontal velocity (for this, let's use a negative value of vertical velocity, since it points downwards)
[tex]\theta=\tan ^{-1}(-\frac{7.35}{3.3})=\tan ^{-1}(-2.2272)=-65.82\degree[/tex](d)
To find the vertical velocity, let's use Torricelli's equation:
[tex]\begin{gathered} V^2=V^2_0+2\cdot a\cdot d \\ V^2=0^2+2\cdot9.8\cdot9 \\ V^2=176.4 \\ V=13.28\text{ m/s} \end{gathered}[/tex]Calculating the final speed magnitude and orientation, we have:
[tex]\begin{gathered} V^2=13.28^2+3.3^2 \\ V^2=187.2484 \\ V=13.68\text{ m/s} \\ \\ \theta=\tan ^{-1}(-\frac{13.68}{3.3})=\tan ^{-1}(-4.145)=-76.44\degree \end{gathered}[/tex]