Answer:
5,588 m
Explanation:
In the diagram:
[tex]\begin{gathered} \angle\text{UVX}=90\degree-21\degree=69\degree \\ \angle\text{XVW}=90\degree-52\degree=38\degree \end{gathered}[/tex]The distance between the two boats is UW and:
[tex]UW=UX+XW[/tex]In right triangle UXV:
[tex]\begin{gathered} \tan V=\frac{UX}{VX} \\ \implies\tan 69\degree=\frac{UX}{1650} \\ \implies UX=1650\times\tan 69\degree \end{gathered}[/tex]Similarly, in the right triangle WXV:
[tex]\begin{gathered} \tan V=\frac{XW}{VX} \\ \implies\tan 38\degree=\frac{XW}{1650} \\ \implies XW=1650\times\tan 38\degree \end{gathered}[/tex]Therefore:
[tex]\begin{gathered} UW=UX+XW \\ =(1650\times\tan 69\degree)+(1650\times\tan 38\degree) \\ =5587.52m \\ \approx5,588m \end{gathered}[/tex]The boats are 5,588 meters apart (correct to the nearest meter).