To answer this question, we need to find the unit rate for the steady speed. Then, we can proceed as follows:
[tex]S=\frac{d}{t}\Rightarrow S=\frac{1\frac{1}{2}}{2\frac{1}{4}}=\frac{1+\frac{1}{2}}{2+\frac{1}{4}}=\frac{\frac{2+1}{2}}{\frac{8+1}{4}}=\frac{\frac{3}{2}}{\frac{9}{4}}=\frac{3}{2}\cdot\frac{4}{9}=\frac{12}{18}=\frac{6}{9}=\frac{2}{3}[/tex]Then, we have that the unit rate, in this case, is 2/3 miles per minute.
Hence, the car will travel in 34 minutes:
[tex]d=S\cdot t=\frac{2}{3}\cdot34\Rightarrow d=\frac{68}{3}=\frac{66}{3}+\frac{2}{3}=22+\frac{2}{3}=22\frac{2}{3}[/tex]Thus, the car will travel 222/3 miles in 34 minutes.
The car will travel in one hour or 60 minutes:
[tex]d=\frac{2}{3}\cdot60=\frac{120}{3}\Rightarrow d=40[/tex]Then, the car will travel 40 miles in one hour or 60 minutes.