Given data:
* The weight of the crate is 65 kg.
* The acceleration of crate and helicopter is,
[tex]a=3ms^{-2}[/tex]Solution:
(1). The forces acting on the crate is represented as,
The y-component of tension is balancing the weight of the crate.
Thus, the y-component (vertical) of tension is,
[tex]\begin{gathered} T_y=W \\ T_y=mg \end{gathered}[/tex]Where m is the mass of crate and g is the acceleration due to gravity,
Substituting the known values,
[tex]\begin{gathered} T_y=65\times9.8 \\ T_y=637\text{ N} \end{gathered}[/tex]Thus, the vertical component of the tesnion is 637 N.
(2). The x-component of tension in the cable is,
[tex]\begin{gathered} T_x=ma \\ T_x=65\times3 \\ T_x=195\text{ N} \end{gathered}[/tex]Thus, the tension in the cable is,
[tex]\begin{gathered} T=\sqrt[]{T^2_x+T^2_y} \\ T=\sqrt[]{195^2^{}+637^2} \\ T=666.2\text{ N} \end{gathered}[/tex]Hence, the tesnion in the cable is 666.2 N.
(3). The angle of tension with the horizontal is,
[tex]\begin{gathered} \tan (\theta)=\frac{T_y}{T_x} \\ \tan (\theta)=\frac{637}{195} \\ \tan (\theta)=3.3 \\ \theta=73.14^{\circ} \end{gathered}[/tex]Thus, the angle made by the tension with the horizontal is 73.14 degree.