11 The table below shows pairs of values that satisfy a linear function.2 -53 64 175 286 397 50What is the y-intercept of the graph of this function?

11 The table below shows pairs of values that satisfy a linear function2 53 64 175 286 397 50What is the yintercept of the graph of this function class=

Respuesta :

10)

we get the points from the table are (2,12) and (8,0).

Consider the line equation.

[tex]y=mx+b[/tex]

where b is the y=intercept.

Substitute x=2 and y=12, we get

[tex]12=m(2)+b[/tex]

[tex]12=2m+b[/tex]

[tex]12-b=2m[/tex]

[tex]\frac{12-b}{2}=m[/tex]

Substitute x=8 and y=0 in the line equation, we get

[tex]0=8m+b[/tex]

Substitute m value in this equation to find the value of b.

[tex]0=8(\frac{12-b}{2})+b[/tex]

[tex]0=4(12-b)+b[/tex]

[tex]0=4\times12-4b+b[/tex]

[tex]0=48-3b[/tex]

[tex]3b=48[/tex]

Dividing both sides by 3, we get

[tex]b=\frac{48}{3}=16[/tex]

Hence the y-intercept is 16.

11)

we get the points from the table are (2,-5) and (4,17).

Consider the liner function.

[tex]y=mx+b[/tex]

where b is the y-intercept.

Substitute x=2 and y=-5, we get

[tex]-5=2m+b[/tex]

[tex]-5-b=2m[/tex]

[tex]\frac{-5-b}{2}=m[/tex]

[tex]m=\frac{-5-b}{2}[/tex]

Substitute x=4 and y=17 in the equation, we get

[tex]17=4m+b[/tex]

Substitute the value of m in this equation to find the value of b.

[tex]17=4(\frac{-5-b}{2})+b[/tex]

[tex]17=2(-5-b)+b[/tex]

[tex]17=-10-2b+b[/tex]

[tex]17+10=-b[/tex][tex]b=-27[/tex]

Hence the y-intercept is -27.