Respuesta :

As for the 10 boys altogether,

[tex]\begin{gathered} \operatorname{mean}=58 \\ \text{and} \\ \operatorname{mean}=\frac{1}{10}\sum ^{10}_{i=1}\text{mark}_i \end{gathered}[/tex]

Thus,

[tex]\Rightarrow580=\sum ^{10}_{i=1}\text{mark}_i[/tex]

On the other hand, as for seven of the boys

[tex]\begin{gathered} \operatorname{mean}=61=\frac{1}{7}\sum ^7_{j=1}\text{mark}_j \\ \Rightarrow427=\sum ^7_{j=1}\text{mark}_j \end{gathered}[/tex]

Thus, regarding the remaining three boys,

[tex]\Rightarrow\sum ^3_{k=1}mark_k=580-427=153[/tex]

Finally, the mean of those remaining three kids is

[tex]\begin{gathered} \text{MEAN}=\frac{1}{3}\sum ^3_{k=1}mark_k=\frac{1}{3}\cdot153=51 \\ \Rightarrow\text{MEAN}=51 \end{gathered}[/tex]

Thus, the mean mark of the remaining 3 boys is 51