Since the length of a single grid square is 1m, then its area is:
[tex]A=1m\times1m=1m^2\text{.}[/tex]Now, to compute the area of the given section we will use the following diagram.
To compute the area of each triangle we will use the following formula for the area of a triangle:
[tex]\begin{gathered} A=\frac{bh}{2}, \\ \text{where b is the base of the triangle and h is its height.} \end{gathered}[/tex]And to compute the area of the rectangle we will use the following formula:
[tex]\begin{gathered} A=bh, \\ \text{where b is the base of the rectangle and h is its height.} \end{gathered}[/tex]Therefore the area of triangle A is:
[tex]A_A=\frac{6m\cdot2m}{2}=6m^2\text{.}[/tex]The area of triangle B is:
[tex]A_B=\frac{4m\cdot2m}{2}=4m^2\text{.}[/tex]The area of triangle C is:
[tex]A_C=\frac{3m\cdot1m}{2}=1.5m^2\text{.}[/tex]The area of triangle D is:
[tex]A_D=\frac{5m\cdot1m}{2}=2.5m^2\text{.}[/tex]The area of rectangle E is:
[tex]A_E=12m^2\text{.}[/tex]Finally, the area of the given section is:
[tex]\begin{gathered} A=A_A+A_B+A_C+A_D+A_E \\ =6m^2+4m^2+1.5m^2+2.5m^2+12m^2=26m^2\text{.} \end{gathered}[/tex]Answer:
The area of a single grid square is:
[tex]1m^2\text{.}[/tex]The approximate area of the section that will be paved is:
[tex]26m^2\text{.}[/tex]