For conic section of the form:
[tex](\frac{x^2}{a^2})-(\frac{y^2}{b^2})=1[/tex]The Ends of the Lactus Rectum is given as:
[tex]L=(ae,\frac{b^2}{a}),L=(ae,\frac{-b^2}{a})[/tex]The e in the equation above is the Eccentricity of the Hyperbola.
This can be obtained by the formula:
[tex]e=\frac{\sqrt[]{a^2+b^2}}{a}[/tex]Thus, comparing the standard form of the conic with the given equation, we have:
[tex]\begin{gathered} \frac{(y+8)^2}{16}-\frac{(x-3)^2}{9}=1 \\ \text{This can be further expressed in the form:} \\ \frac{(y+8)^2}{4^2}-\frac{(x-3)^2}{3^2}=1 \\ By\text{ comparing this with:} \\ \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \\ We\text{ can deduce that:} \\ a=4;b=3 \end{gathered}[/tex]Then, we need to obtain the value of the Eccentiricity, e.
[tex]\begin{gathered} e=\frac{\sqrt[]{a^2+b^2}}{a} \\ e=\frac{\sqrt[]{4^2+3^2}}{4} \\ e=\frac{\sqrt[]{16+9}}{4} \\ e=\frac{\sqrt[]{25}}{4}=\frac{5}{4} \end{gathered}[/tex]Hence, the coordinate of the ends of the each lactus rectum is:
[tex]\begin{gathered} L=(ae,\frac{b^2}{a}),L=(ae,\frac{-b^2}{a}_{}) \\ L=(4\times\frac{5}{4},\frac{3^2}{4}),L=(4\times\frac{5}{4},\frac{-3^2}{4}) \\ L=(5,\frac{9}{4}),L=(5,\frac{9}{4}) \end{gathered}[/tex]