Respuesta :

Answer:

A) ✓7

Explanation:

Given the expression:

[tex]4^{\log _{16}7}[/tex]

First, we can rewrite 4 as a root of 16.

[tex]=16^{\frac{1}{2}\log _{16}7}[/tex]

Next, by the power law of logarithm:

[tex]a\log x=\log x^a\implies\frac{1}{2}\log _{16}7=\log _{16}7^{\frac{1}{2}}[/tex]

Thus, our given expression becomes:

[tex]=16^{\log _{16}\sqrt{7}}[/tex]

Using the logarithm property below:

[tex]\begin{gathered} x^{\log _xa}=a \\ \implies16^{\log _{16}\sqrt[]{7}}=\sqrt[]{7} \end{gathered}[/tex]

The exact value of the expression is ✓7.

Option A is correct.