9) We can calculate the volume as the product of the base area and the height.
The base is a circle with radius r=18 in. Then, its area is:
[tex]A_b=\pi r^2=\pi\cdot18^2=324\pi[/tex]Then, we can calculate the volume V as:
[tex]V=A_b\cdot h=324\pi\cdot15=4860\pi[/tex]10) In this case the circular base is on the side, but we can still use the same principle to calculate the volume.
The area of the base with diameter D = 11 in is:
[tex]A_b=\frac{\pi D^2}{4}=\frac{\pi\cdot11^2}{4}=\frac{\pi\cdot121}{4}=\frac{121}{4}\pi[/tex]Then, we can calculate the volume V as:
[tex]V=A_b\cdot h=\frac{121}{4}\pi\cdot21=\frac{2541}{4}\pi=635.25\pi[/tex]Answer:
9) V = 4860π
10) V = 635.25π