The expression for the recursive sequence is :
[tex]a_n=3a_{n-1}+3[/tex]where a1 = 9
First term:
Since first term is already given:
[tex]a_1=9[/tex]Second Term :
Substitute n =2 in the recursive expression and simlify
[tex]\begin{gathered} a_n=3a_{n-1}+3 \\ a_2=3(a_{2-1})+3 \\ a_2=3(a_1)+3 \\ a_2=3(9)+3 \\ a_2=27+3 \\ a_2=30 \end{gathered}[/tex]Second Term : 30
Third Term:
Substitute n = 3 in the given recursive expression:
[tex]\begin{gathered} a_n=3a_{n-1}+3 \\ a_3=3(a_{3-1})+3 \\ a_3=3(a_2)+3 \\ a_3=3(30)+3 \\ a_3=90+3 \\ a_3=93 \end{gathered}[/tex]Third Term = 93
Fourth Term:
Substitute n = 4 in the given recursive expression:
[tex]\begin{gathered} a_n=3a_{n-1}+3 \\ a_2=3(a_{2-1})+3 \\ a_2=3(a_1)+3 \\ a_2=3(9)+3 \\ a_2=27+3 \\ a_2=30 \end{gathered}[/tex]