Recall Heron's Formula to find the area of a triangle with sides a, b and c.
We define a new quantity s given by:
[tex]s=\frac{a+b+c}{2}[/tex]Then, the area of the triangle is given by the formula:
[tex]A=\sqrt{s(s-a)(s-b)(s-c)}[/tex]For a=20, b=10 and c=15 we have:
[tex]s=\frac{20+10+15}{2}=22.5[/tex]Then, the area of the triangle is:
[tex]\begin{gathered} A=\sqrt{22.5(22.5-20)(22.5-10)(22.5-15)} \\ =\sqrt{22.5(2.5)(12.5)(7.5)} \\ =\frac{75\sqrt{15}}{4} \\ =72.61843774... \\ \approx72.6 \end{gathered}[/tex]Therefore, the exact answer is:
[tex]A=\frac{75\sqrt{15}}{4}[/tex]And the approximate area of the triangle ABC when c=15m, a=20m and b=10m is 72.6 m^2.