Let us use the rule of the double of the angle
Since
[tex]\cos B=2\cos ^2\frac{B}{2}-1[/tex]Substitute cos B by 7/8
[tex]\frac{7}{8}=2\cos ^2\frac{B}{2}-1[/tex]Add 1 to both sides
[tex]\begin{gathered} \frac{7}{8}+1=2\cos ^2\frac{B}{2}-1+1 \\ \frac{15}{8}=2\cos ^2\frac{B}{2} \end{gathered}[/tex]Divide both sides by 2
[tex]\begin{gathered} \frac{\frac{15}{8}}{2}=\frac{2\cos ^2\frac{B}{2}}{2} \\ \frac{15}{16}=\cos ^2\frac{B}{2} \end{gathered}[/tex]Take a square root for both sides
[tex]\begin{gathered} \sqrt[]{\frac{15}{16}}=\cos \frac{B}{2} \\ \cos \frac{B}{2}=\frac{\sqrt[]{15}}{4} \end{gathered}[/tex]let us find sin B
Since
[tex]\sin ^2\frac{B}{2}+\cos ^2\frac{B}{2}=1[/tex]Then
[tex]\sin ^2\frac{B}{2}+\frac{15}{16}=1[/tex]Subtract 15/16 from both sides
[tex]\begin{gathered} \sin ^2\frac{B}{2}+\frac{15}{16}-\frac{15}{16}=1-\frac{15}{16} \\ \sin ^2\frac{B}{2}=\frac{1}{16} \end{gathered}[/tex]Take a square root for both sides
[tex]\begin{gathered} \sin \frac{B}{2}=\sqrt[]{\frac{1}{16}} \\ \sin \frac{B}{2}=\frac{1}{4} \end{gathered}[/tex]Since
[tex]\tan \frac{B}{2}=\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}[/tex]Then
[tex]\begin{gathered} \tan \frac{B}{2}=\frac{\frac{1}{4}}{\frac{\sqrt[]{15}}{4}} \\ \tan \frac{B}{2}=\frac{1}{\sqrt[]{15}} \end{gathered}[/tex]The value of tan(1/2 B) is
[tex]\frac{1}{\sqrt[]{15}}\times\frac{\sqrt[]{15}}{\sqrt[]{15}}=\frac{\sqrt[]{15}}{15}[/tex]